Variation of SIFT Descriptor for Affine Invariant Object Matching

نویسندگان

  • Yen Do
  • Soo Hyung Kim
  • Sang Cheol Park
چکیده

In this paper, a novel affine invariant descriptor for object matching is proposed. The advantage of Maximally Stable Extremal Regions (MSER) method is applied to get the most stable regions in the image. Inside each region, we pick the seeds as keypoints since MSER regions are invariant to affine transformation. Besides that, Voronoi diagram is employed to split the image into small Voronoi cells or local regions based on the key points picked in the previous step. Finally, local features inside each local region including color, texture and geometric properties are extracted to generate the descriptor. Our experiments demonstrate that the proposed affine invariant local descriptor based on Voronoi tessellation is more stable and robust to object matching than SIFT descriptor while using the same keypoints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The University of Sheffield and Harbin Engineering University at TRECVID 2012 : Instance Search

This paper describes our contribution to instance search (INS) task for TRECVID 2012. We present four approaches for this task, (i) histograms of SIFT features as feature vectors and Bhatacharya distance for similarity detection (ii) feature vector is combination of SIFT features alone, while for matching we used a basic descriptor matching algorithm (iii) IR based approach using SIFT features ...

متن کامل

A comparison of feature detectors and descriptors for object class matching

Solid protocols to benchmark local feature detectors and descriptors were introduced by Mikolajczyk et al. [1, 2]. The detectors and descriptors are popular tools in object class matching, but the wide baseline setting in the benchmarks does not correspond to class-level matching where appearance variation can be large. We extend the benchmarks to the class matching setting and evaluate state-o...

متن کامل

Adaptive Algorithm For Fast And Accurate Video Object Tracking Using SIFT And BMA For Slow And Rapid Movements

A novel adaptive video object tracking algorithm is proposed using intensity based and feature based techniques which results in improved reliability and at the same time it aims to reduce computational complexity. This is achieved by intelligently combining SIFT and BMA and making it adaptive to the speed of the moving object. Tracking frame by frame using SIFT which is successful for detectin...

متن کامل

An improvement to the SIFT descriptor for image representation and matching

0167-8655/$ see front matter 2013 Elsevier B.V. A http://dx.doi.org/10.1016/j.patrec.2013.03.021 ⇑ Corresponding author. Tel./fax: +86 29 82667836 E-mail addresses: [email protected], liugz@xjtu Constructing proper descriptors for interest points in images is a critical aspect for local features related tasks in computer vision and pattern recognition. Although the SIFT descriptor has been p...

متن کامل

Technical Report LDAHash: Improved matching with smaller descriptors

SIFT-like local feature descriptors are ubiquitously employed in such computer vision applications as content-based retrieval, video analysis, copy detection, object recognition, photo-tourism and 3D reconstruction. Feature descriptors can be designed to be invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013